2022

Calculation policy:Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Suggested year group	Concrete	Pictorial	Abstract
EYFS/Y1	Combiningtwo partsto makea whole (use other resources tooe.g.eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.
EYFS/Y1	Counting on using number lines using cubes or Numicon.	Abarmodelwhichencouragesthe childrentocounton, rather than countall.	Theabstractnumberline: What is 2 more than 4? Whatis the sum of 2 and 4 ? What is the total of 4 and 2? 4 $+2$

EYFS/Y1	Regrouping to make 10; usingten frames and counters/cubes or using Numicon.	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{gathered} 6+\square=11 \\ 6+5=5+\square \\ 6+5=\square+4 \end{gathered}$
Y1	TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$\begin{array}{ll} \hline 41+8 & 1+8=9 \\ & 40+9=49 \end{array}$
Y2	TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$	Chidlren to represent the base 10 in a place value chart.	Looking for ways to make 10.

Calculation policy:Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Suggested year group	Concrete	Pictorial	Abstract
EYFS/Y1	Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used). $4-3=1$	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can alsobeused. Q \&囚O	$4-3=$$=4-3$4 3 $?$
EYFS/Y1	Counting back (using number lines or number tracks) children startwith 6 and count back 2. $6-2=4$	Children to represent what they see pictorially e.g.	Childrento represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line

Y1/Y2	Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 .	Children to draw the cubes/other concrete objects which theyhaveusedorusethe barmodeltoillustratewhat they need to calculate.	Findthedifferencebetween8and 5. $8-5$, the difference is Children to explore why $9-6=8-5=7-4$ have the same difference.
Y1/Y2	Making 10 using ten frames (or numicon). $14-5$	Children to present the ten frame pictorially and discuss what they did to make 10.	Childrentoshow how they can make 10 by partitioning the subtrahend. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$
Y2	Column method using base 10. 48-7	Children to represent the base 10 pictorially.	Column method or children could count back 7 .

Conceptual variation; different ways to ask children to solve 391-186

Raj spent $£ 391$. Timmy spent £186. How much more did Raj spend?

391
Calculate the difference between 391 and 186.
-186

What is 186 less than 391 ?

Missing digit calculations

$\square 0 \quad 5$

Calculation policy:Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, is equal to, is the same as.

Suggested year group	Concrete	Pictorial	Abstract
EY/Y1	Repeated grouping/repeated addition 3×4 $4+4+4$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model. 888888 ?	$\begin{gathered} 3 \times 4=12 \\ 4+4+4=12 \end{gathered}$
Y2	Number lines to show repeated groups- 3×4	Represent this pictorially alongside a number line e.g.:	Abstractnumberline showing three jumps of four. $3 \times 4=12$

Y2/Y3	Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Y3	Partitiontomultiply using Numicon, base 10. 4×15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. $\begin{array}{r} 4 \times 15 \\ 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$ A number line can also be used
Y3	Formal column method with place value counters or base 10 (at the first stage- no exchanging) 3×23	Children to represent the counters pictorially.	Children to record whatitis they are doing to show understanding. $\begin{array}{ll} 3 \times 23 & 3 \times 20=60 \\ & 3 \times 3=9 \\ 23 & 60+9=69 \\ \times \quad 3 & \\ \hline 69 & \\ \hline \end{array}$

Calculation policy:Division

Key language: share, group, divide, divided by, half, 'is equal to' 'is the same as'

Suggested year group	Concrete	Pictorial	Abstract
EY/Y1	Sharing using a range of objects. $6 \div 2$ e.g. children and hoops, teddy bears, cakes and plates etc.)	Represent the sharing pictorially. By using a bar all 4 operations can have a similar structure	$6 \div 2=3$3 3 Children should also be encouraged to use their2times tablesfacts.
Y2	Repeated subtraction. $6 \div 2$ 3 groups of 2	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.

Y4/Y5	Shortdivision, leading to the bus stop method using placevalue counters to group. Key language for grouping - how many groups of x can we make with x hundreds. $615 \div 5$ 1. Make 615 with place value counters. 2. How many groups of 5 hundreds can you make with 6 hundredcounters? 3. Exchange 1 hundred for 10 tens. 4. How many groups of 5 tens can you make with 11 ten counters? 5. Exchange 1 ten for 10 ones. How many groups of 5 ones can you make with 15 ones?	Represent the place value counters pictorially until the children no longer need to do it. It can also be done to decimal places if you have a remainder.	Children to the calculation using the short division scaffold.

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

$$
\begin{gathered}
1 2 \longdiv { 0 2 } \\
\frac{24}{2544} \\
\frac{24}{2}
\end{gathered}
$$

After exchanging the hundred, we
have 14 tens. We can group 12 tens

$$
\begin{aligned}
& 1 2 \longdiv { 2 5 4 4 } \\
& \begin{array}{r}
24 \\
\hline 14 \\
\hline 2
\end{array}
\end{aligned}
$$

into a group of 12 , which leaves 2 tens.

After exchanging the 2 tens, we

$$
\begin{array}{r}
0212 \\
1 2 \longdiv { 2 5 4 4 } \\
\text { der. } \frac{24}{14} \\
\hline \frac{12}{24} \\
\hline 24 \\
\hline 0
\end{array}
$$ have 24 ones. We can group 24 ones

into 2 group of 12, which leaves no remainder.

Conceptual Variations; different ways to ask children to solve 615 $\div 5$

Using the part whole model below, how can you divide 615 by 5 without using shortdivision?

I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be putinto 5 groups. How many will be ineach group?
$5 \longdiv { 6 1 5 }$
$615 \div 5=$
$?=615 \div 5$

What is the calculation?
What is the answer?

